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0. Why we study eigenvalues for nonnegative tensors?
In this talk, a tensor(supermatrix) is understood as an array of data:

A = (ai1i2···im) 1 ≤ i1i2 · · · im ≤ n.

where ai1i2···im are numbers, real or complex.
The nm numbers arranged in this way is called an m order, n
dimensional tensor.
It is an extension of matrix, a matrix is a 2 order tensor.
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In 2005, Qi and Lim independently proposed to find
(λ0, x0) ∈ R1 × (Rn\{0}) satisfying
◦ (The H− eigenvalue problem)

Σn
i2,··· ,im=1aii2···imxi2 · · · xim = λxm−1

i , i = 1, 2, · · · , n,

◦ (The Z− eigenvalue problem){
Σn

i2,··· ,im=1aii2···imxi2 · · · xim = λxi, i = 1, 2, · · · ,m,
Σn

i=1x2
i = 1

◦ According to Qi, the LHS of these equations is denoted by
Axm−1 ∈ Rn.
◦ Eigenvalues only depends on the n homogeneous polynomials:
(Axm−1)i, i = 1, · · · n. ⇒May assume the (m − 1)-order
n-dimensional tensor (aii2···im) is symmetric, ∀ i.

K. C. Chang A Survey on Eigenvalues for Nonnegative Tensors



(1). Best rank-1 approximation
B ∈ R[m,n] is called Rank-1, if ∃ (λ, u) ∈ R1 × Sn−1, such that
B = λu⊗m, where u = (u1, · · · un), and

u⊗m = Σn
i1,···imui1 · · · uim .

A ∈ R[m,n] is called symmetric [Qia]if

ai1···im = aσ(i1···im) for all σ ∈ Sm,

where Sm denotes the permutation group of m indices.
Given a symmetric tensor A we want to find a rank-1 tensor B = λu⊗m

such that

‖A − B‖2F = min
(λ,v)∈R1×Sn−1

Σn
i1···im |ai1···im − λvi1 · · · vim |

2.
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⇔ {
λ = Aum =

∑n
i1,··· ,im=1 ai1···imxi1 · · · xim ,

Aum = maxv∈Sn−1 Avm

⇔ 
Aum−1 = λu,
Σn

i=1u2
i = 1,

λ = Aum

⇒ u is a Z-eigenvalue of A.
L. De Lathauwer, B. De Moor and J. Vandewalle [LMV] (2000), E.
Kofidis and P. Regalia [KR] (2002), Qi [Qia](2005).
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(2). Spectrum for Hypergraph Let G = (V ,E) be a graph .
(Vertex set) V = {1, 2, · · · , n},
(Edge set) E is a set of paths (or edges). A path connecting vertex i
and vertex j is denoted by e = eij.
Adjacency matrix A = (aij)

aij =

{
1 if∃ eij ∈ E,
0 otherwise.

The spectrum of a graph provides many important information of the
graph. Graph spectral theory becomes a part of graph theory.
H = (V ,E) is said to be a hypergraph , if each edge e ∈ E is a subset
of V . It is called m-uniform for an integer m ≥ 2, if for all e ∈ E(H),
|e| = m. (Duchet)
The counterpart of the adjacency matrix now is the adjacency tensor
AH = (ai1,··· ,im) defined by

ai1,··· ,im =

{
1, if i1, · · · im ∈ E
0, otherwise
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Lim applied H−eigenvalues to study hypergraphs.
Recently,
◦ Cooper and Dutle [CD] studied the largest modulus of a m-grpah.
◦ By using the spectral radius of the hypergraph H, Bulo and Pelillo
[BP, BP1] obtained new upper and lower bounds for the clique
number ω(G) of a undirected graph G.
see also, Hu and Qi [HQ-2], J. Xie, A. Chang [XC], and K. Pearson,
and T. Zhang [PT].
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(3). High order Markov Chain
In analyzing data sequences in different areas, W. Ching and M. Ng
[CN] and Ng et al. [LNY ][LN ],[N ] employed high order Markov
chain models as a new mathematical tool. This leads to eigenvalue
problems for nonnegative tensors.
A higher-order Markov chain is an extension of the finite Markov
chain, in which the stochastic process X0,X1, · · · with values in
{1, 2, · · · , n} has the transition probabilities:

0 ≤ pi1i2···im = Prob(XN = i1 | XN−1 = i2, . . . ,XN−m+1 = im) ≤ 1

where
n∑

i1=1

pi1,i2,··· ,im = 1, 1 ≤ i2, ..., im ≤ n, (Sto).

A tensor P ∈ R[m,n]
+ :

P = (pi1i2...im), 1 ≤ i1, i2, ..., im ≤ n,

satisfying (Sto), is called a transition probability tensor.
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Let the probability distribution at time N be ξ(N) ∈ ∆n, where

∆n = {x ∈ Rn : x ≥ 0,
n∑

j=1

xj = 1}.

Then we have

ξ(N+m) =

 n∑
i2···im=1

pi,i2···imξ
(N+m−1)
i2

· · · ξ(N)
im

n

i=1

∈ ∆n, N = 1, 2, · · · .

If
lim

N→∞
ξ(N) = ξ

exists, then ξ satisfies {
Pxm−1 = x,
x ∈ ∆n.

ξ is called the stationary probability distribution of the higher-order
Markov chain.
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This is a new kind of eigenvalue problem:
Pxm−1 = λx,
xi ≥ 0, i = 1, · · · , n,
Σn

i=1xi = 1.

It is called a Z1 eigenvalue problem.
⇒ λ = 1.
Although the Z1 eigenvalue problem is different from the
Z-eigenvalue problem for P,
they share the same eigenvectors (with a positive constant multiplier),
but correspond to different eigenvalues.
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(4) Other applications.
◦ Diffusion kurtosis tensors, (Qi, Wang and Wu [QWW]; Qi, Yu and
Wu [QYW]; Hu, Huang, Ni and Qi [HHNQ] and Qi, Yu and Xu
[QYX] 2007-2009)
◦ Multi-relation data mining, (X. Li, M. Ng, Y. Ye [LNY] 2011)
◦ Illumination Detection of an Image, (Zhang, Zhou, Peng 2011)
◦ The quantum entanglement problem is related to Z−eigenvalue
problem, (see S. Hu, L. Qi, and G. Zhang [HQZ] 2012).

◦ High order Taylor expansions
◦ High order moments of statistical quantities
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1. P-F Theorem for nonnegative matrices

Theorem
(Weak Form) If A is a nonnegative square matrix, then

1 r(A), the spectral radius of A, is an eigenvalue.
2 There exists a nonnegative vector x0 	 0 such that

Ax0 = r(A)x0.

Definition

A square matrix A is said to be reducible if it can be placed into block
upper-triangular form by simultaneous row/column permutations. A
square matrix that is not reducible is said to be irreducible.
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Theorem
(Strong Form) If A is an irreducible nonnegative square matrix, then

1 r(A) > 0 is an eigenvalue.
2 There exists a positive vector x0 > 0 , i.e. all components of x0

are positive, such that Ax0 = r(A)x0.
3 (Uniqueness) If λ is an eigenvalue with a nonnegative

eigenvector, then λ = r(A).
4 r(A) is a simple eigenvalue of A.
5 If λ is an eigenvalue of A, then |λ| ≤ r(A).

Concerning the distribution of eigenvalues on the spectral circle
{λ ∈ C | |λ| = r(A)},

Theorem

Let A be an irreducible nonnegative matrix. If A has k distinct
eigenvalues of modulus r(A), then the eigenvalues are r(A)ei2πj/k,
where j = 0, 1, · · · , k − 1.
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We call the number k the cyclic index of A.

Definition
An irreducible nonnegative matrix A is said to be primitive if the only
nonempty subset of the boundary of the positive cone P in Rn, which
is invariant under the action of A is {0}.

In particular, if A is a positive matrix, then A is primitive.

Theorem
A is a primitive matrix if and only if A has cyclic index 1.

Corollary
If A is a positive matrix, and λ , r(A) is an eigenvalue of A then
|λ| < r(A).
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There is also a minimax characterization of the spectral radius for
irreducible nonnegative matrices due to Collatz.

Theorem
(Collatz) Assume A is an irreducible nonnegative n × n matrix, then

min
x∈P◦

max
{i|xi>0}

(Ax)i

xi
= r(A) = max

x∈P◦
min
{i|xi>0}

(Ax)i

xi
,
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Power method in computing r(A)
Let A ≥ 0 be an n × n irreducible matrix. For any initial value
y(0) ∈ P◦, the interior of P, let x1 = ‖y0‖−1y0. We compute iteratively

y(r) = Ax(r), x(r) = ‖y(r−1)‖−1y(r−1) r ≥ 1.

Compute

λr = max
1≤i≤n

y(r)
i

x(r)
i

, λr = min
1≤i≤n

y(r)
i

x(r)
i

;

We have,
λ0 ≤ λ1 ≤ · · · ≤ r(A) ≤ · · · ≤ λ1 ≤ λ0.

Conclusion:

Theorem

If A is primitive, then both the sequences (x(r), λr) and (x(r), λr),
produced by the power method, converge to (x0, r(A)), where x0 is the
positive eigenvector corresponding to the eigenvalue r(A).
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2. The H-spectral theory for nonnegative tensors

Theorem

(Qi [Qia] 2005 ) If A ∈ R[m,n] is symmetric, then
1 A number λ ∈ C is an eigenvalue of A ⇔ a root of the

characteristic polynomial φ(λ) = det(A − λI), where
I = (δi1···im) denotes the identity tensor.

2 The number of eigenvalues of A is d = n(m − 1)n−1. Their
product is equal to det(A), the resultant of Axm−1 = 0.

3 The sum of all the eigenvalues of A is (m − 1)n−1tr(A), where
tr(A) denotes the sum of the diagonal elements of A.

4 If m is even, then A always has H-eigenvalues. A is positive
definite (positive semidefinite) ⇔ all of its H-eigenvalues are
positive (nonnegative).

5 The eigenvalues of A lie in the following n disks:

|λ − aii···i| ≤
∑

i2,··· ,im,i

|aii2···im |, ∀ 1 ≤ i ≤ n.
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In fact, the symmetric assumption on A in [Qia] is superfluous. The
determinant can be defined as the resultant of these polynomials:

det(A) = res((Axm−1)1, · · · (Axm−1)n),

then the characteristic polynomial becomes

φ(λ) = det(A − λI).

Canny [Can] defined the generalized characteristic polynomial
(GCP), C(λ), of a system of homogeneous polynomials f1, . . . , fn in
the variables x1, . . . , xn to be the resultant of {f1 − λxd1

1 , . . . , fn − λxdn
n },

where each fi has total homogeneous degree di.

σ(A) = {λ | λ is an eigenvalue of A}
is called the spectrum of A.
⇒ σ(A) , ∅ is a finite set.

ρ(A) = max{|λ| | λ ∈ σ(A)}.

is called the spectral radius[YYa] .
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Lim [Lima] first proposed to extend the Perron-Frobenius Theorems
to nonnegative tensors in this setting.

Theorem

(Chang, Pearson, and Zhang 2008 [CPZPF]) If A ∈ R[m,n]
+ , then there

exist λ0 ≥ 0 and a nonnegative vector x0 , 0 such that

Axm−1
0 = λ0x[m−1]

0 . (H)

The proof is based on Brouwer fixed point theorem. Lim [Lima] also
extended the notion of irreducibility to higher order tensors.

Definition

A tensor A = (ai1···im) ∈ R[m,n] is called reducible, if there exists a
nonempty proper index subset I ⊂ {1, . . . , n} such that

ai1···im = 0, ∀i1 ∈ I, ∀i2, . . . , im < I.

If A is not reducible, then we call A irreducible.
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Let Pn = {(x1, . . . , xn) ∈ Rn | xi ≥ 0, ∀ i} be the positive cone in Rn.

Theorem

(Chang, Pearson, and Zhang 2008 [CPZPF]) If A ∈ R[m,n]
+ is

irreducible, then the eigenpair (λ0, x0) in (H) satisfies:
1 (Positivity) λ0 > 0 and x0 > 0, i.e. all components of x0 are

positive.
2 (Uniqueness) If λ is an eigenvalue with nonnegative eigenvector,

then λ = λ0.
3 (Positively simple) the nonnegative eigenvector is unique up to a

multiplicative constant.
4 (Largest modulus) If λ is an eigenvalue of A, then |λ| ≤ λ0.

Corollary

(Yang and Yang [YYa]) ∀ A ∈ R[m,n]
+ , ρ(A) is an eigenvalue of A.
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Theorem

(Yang and Yang [YYa]) Let A ∈ R[m,n]
+ be irreducible. If A has k

distinct eigenvalues of modulus ρ(A), then the eigenvalues are
ρ(A)ei2πj/k, where j = 0, 1, · · · , k − 1.

Theorem

(Chang Pearson and Zhang [CPZPFco]) Assume A ∈ R[m,n]
+ is

irreducible, then

min
x∈(Pn)◦

max
{i|xi>0}

(Axm−1)i

xm−1
i

= ρ(A) = max
x∈(Pn)◦

min
{i|xi>0}

(Axm−1)i

xm−1
i

.

Inspired by Theorem [CPZPFco] and Power method for matrices, Ng,
Qi, and Zhou [NQZ] proposed the following algorithm for calculating
the spectral radius:

K. C. Chang A Survey on Eigenvalues for Nonnegative Tensors



1 Choose x0 ∈ (Pn)◦. Let y0 = A(x(0))m−1 and set k := 0.
2 Compute

x(k+1) =
(y(k))[ 1

m−1 ]

‖(y(k))[ 1
m−1 ]‖

,

y(k+1) = A(x(k+1))m−1,

λk+1 = min
1≤i≤n

(y(k+1))i

(x(k+1)
i )m−1

,

λk+1 = max
1≤i≤n

(y(k+1))i

(x(k+1)
i )m−1

.

If the iteration does not terminate in finite time, are the sequences
{λk, x

(k)} {λk, x(k)} convergent?
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By defining the nonlinear map on Pn associated with the tensor A, one
defines a map:

TAx := ( Axm−1)[ 1
m−1 ],

Chang Pearson and Zhang [CPZP] enabled the composition of the
tensor A with itself and extended the definition of primitivity to
tensors.

Definition
An irreducible nonnegative tensor A is said to be primitive if the only
nonempty subset of the boundary of the positive cone Pn, which is
invariant under TA is {0}.

Theorem

[CPZP] Let A ∈ R[m,n]
+ , then the following statements are equivalent:

1 A is primitive.
2 ∃ r ∈ N such that Tr

A(Pn\{0}) ⊂ (Pn)◦, i.e., Tr
A is strongly

positive.
3 ∃ r ∈ N such that Tr

A is strictly increasing.
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Theorem

[CPZP] If A ∈ R[m,n]
+ is primitive, then its cyclic index is 1.

Theorem

[CPZP] Let A ∈ R[m,n]
+ be irreducible. Both the sequences {λk} and

{λk} converge to ρ(A) for an arbitrary initial value x0 ∈ Pn\{0} if and
only if A is primitive.
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Corollary
[CPZP] Let A ≥ 0 be irreducible. Then A + αI is primitive, where I is
the identity tensor and α > 0.

Corollary
[CPZP] If A ≥ 0 is essentially positive, then A is primitive.

These corollaries imply the convergence results in Qi and Zhang [QZ]
and Yang, Yang and Li [YYL].

In particular, for any irreducible A ∈ R[m,n]
+ , one may use the iteration

proposed by Ng Qi and Zhou to the modified tensor A + αI, (which is
primitive). And subtract α after finding the largest eigenvalue of
A + αI.
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Recently, Friedland, Gaubert and Han [FGH] introduced the notion of
weakly irreducible nonnegative tensors. Given A = (ai1···im) ∈ R[m,n]

+ , it
is associated to a directed graph G(A) = (V ,E(A)), where
V = {1, 2, · · · , n} and a directed edge (i, j) ∈ E(A) if there exists
indices {i2, · · · , im} such that j ∈ {i2, · · · , im} and aii2···im > 0, i.e.,

Σj∈{i2,··· ,im}aii2···im > 0.

Definition

A nonnegative tensor A ∈ R[m,n]
+ is called weakly irreducible if the

associate directed graph G(A) is strongly connected.
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It is equivalent Hu ([Hu]) to say: ⇔ the matrix M(A) = (mij) is
irreducible, where

mij = Σj∈{i2,··· ,im}aii2···im .

irreducible⇒ weakly irreducible

Example

[YYc] Let A ∈ R[4,3]
+ be given by

a1111 = a1123 = a2223 = a3113 = 1 and aijkl = 0 elsewhere.

This is a reducible, weakly irreducible tensor.
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Meanwhile, Friedland, Gaubert and Han [FGH] discovered that a
series of results obtained by Nussbaum [Nusa, Nusb], Burbanks,
Nussbaum, and Sparrow [BNS], and Gaubert, Gunawardena [GG] etc.
on order preserving mappings as well as on positively 1-homogeneous
monotone functions can be applied to the nonnegative tensors setting.
Applying these results, they reproved Theorem P-R Theorem (strong
form) under the weakly irreducible condition:

Theorem

[FGH] Assume that A ∈ R[m,n]
+ is weakly irreducible. Then there

exists a unique positive H-eigenvector with positive eigenvalue.

A comparison
1 (irreducible) existence in (Pn)◦, uniqueness in Pn\{0}.
2 (weakly) existence in (Pn)◦, uniqueness in (Pn)◦.
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Comparing results for tensors and the classical for nonnegative
matrices.
The following THREE PROPERTIES are the same:
(Positivity) for eigenpair (λ0, x0) ∈ R1

+ × (Pn)◦.
(Uniqueness) for eigenvalue with nonnegative eigenvector.
(Largest modulus) |λ| ≤ λ0 ∀ λ ∈ σ(A).
The difference between nonnegative matrices and tensors:

irreducible matrices→

weakly irreducible tensors
irreducible tensors.

Geometrically simple ← | → Positively simple
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Definition
([CPZPF]) Let λ ∈ σ(A), λ is called real geometric multiplicity q, if
the maximum number of linearly independent real eigenvectors
corresponding to λ equals q. If q = 1, then λ is called real
geometrically simple.

Example

([CPZPF]) Let A = (aijk) ∈ R[3,2]
+ be such that a111 = a222 = 1,

a122 = a211 = ε for 0 < ε < 1, and aijk = 0 for other (ijk). Then the H
eigenvalue problem reads asx2

1 + εx2
2 = λx2

1

εx2
1 + x2

2 = λx2
2.

We have λ0 = 1 + ε, with eigenvectors: u1 = (1, 1) and u2 = (1,−1).
⇒ the real geometric multiplicity of λ0 = 1 + ε is 2.
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When m is even,
TA(x) = (Axm−1)

1
m−1 ,

is well defined on Rn, 1-homogeneous, and maps Pn to Pn. In this
case,

Axm−1 = λxm−1 ⇔ TAx = λ
1

m−1 x, ∀ x ∈ Rn.

It follows directly

Corollary

([YYb]) Let A ∈ R[m,n]
+ be irreducible and m is even. Then ρ(A) is real

geometrically simple.

⇒ Yang-Yang [YYa] and Pearson [KJP] (for essential positive
tensors i.e., TA is strongly positive) on the geometric simplicity of the
largest eigenvalue.

K. C. Chang A Survey on Eigenvalues for Nonnegative Tensors



The example [YYc], which is reducible but not weak irreducibility
yields two positive eigenvectors:
x1 = (−0.410215, 0.231207, 0.33885), and
x2 = (5.03736, 2.83918, 4.16102), corresponding to ρ(A) ≈ 1.46557.
This means: ρ(A) of a nonnegative even order weakly irreducible
tensor is not real geometrically simple.
Various extensions
◦ Zhang and Qi [QZ] studied the weakly positive tensors.
◦ Hu, Huang, and Qi [HHQ] studied the strictly nonnegative tensors.
◦ Further developments with regards to the algorithms can be found
in [LZI, YYL, ZCQ, ZQX, ZQW].
◦ Extensions to rectangular nonnegative tensors, essentially
nonnegative tensors and M-tensors can be found in [CQZ, CZ, KJP,
YY2, Zh, ZQL, ZQZ, ZCQ].
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3. The Z-spectral theory for nonnegative tensors

Definition

([Qib]) Let A ∈ R[m,n]. A pair (λ, x) ∈ C × (Cn \ {0}) is called an
E-eigenvalue and E-eigenvector of A if they satisfy the equation{

Axm−1 = λx,
xTx = 1

We call (λ, x) a Z-eigenpair if they are both real.

◦ Z eigenpairs are orthogonally invariant! [Qi]
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The E-characteristic polynomial of A is defined as ([Qi])

ψA(λ) = resx(Axm−1 − λ(xTx)
m−2

2 x), m is even,
ψA(λ) = resx,x0(Axm−1 − λxm−2

0 x, x>x − x2
0), m is odd.

We say that A is regular if the following system has no nonzero
complex solutions: {

Axm−1 = 0,
xTx = 0
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Theorem
Qi [Qia],[Qib]

1 If A is regular, E-eigenvalue of A ⇔ root of ψA .
2 If A is symmetric, then the Z-eigenvalues always exist. An even

order symmetric tensor is positive definite if and only if all of its
Z-eigenvalues are positive.

3 The E-characteristic polynomial is orthogonal invariant.
4 If λ is the Z-eigenvalue of A with the largest absolute value and x

is a Z-eigenvector associated with it, then λxm is the best
rank-one approximation of A, i.e.,

‖A − λxm‖F =

√
‖A‖2F − λ2

= min{‖A − αum‖F : α ∈ R, u ∈ Rn, ‖u‖2 = 1},

where ‖ · ‖F is the Frobenius norm.

K. C. Chang A Survey on Eigenvalues for Nonnegative Tensors



In contrast to σ(A), the E spectrum may be unbounded.

Example

Let A = (aijk) ∈ C[3,2], where

a111 = a221 = 1, a112 = a222 = i, aijk = 0 otherwise.

We solve the system {
x2

1 + ix1x2 = λx1,

x1x2 + ix2
2 = λx2

It is easily seen that all λ , 0 are E-eigenvalues of A.
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On the existence of Z− eigenvalue for nonnegative tensors

Theorem

([CPZ1]) If A ∈ R[m,n]
+ , then there exists a Z-eigenpair

(λ0, x0) ∈ R1
+ × Pn. If further, If A is irreducible, then the pair

(λ0, x0) ∈ (R1
+)◦ × (Pn)◦.

Comparing with H eigenvalues for nonnegative tensors, the existence
of positive eigenpair is the same. But there is NO UNIQUENESS!

Example

Let A ∈ R[4,2]
+ be defined by

a1111 = a2222 =
4
√

3
, a1112 = a1121 = a1211 = a2111 = 1,

a1222 = a2122 = a2212 = a2221 = 1, and aijkl = 0 elsewhere.
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It is irreducible and has two positive Z-eigenvalues:
(λ0, x0) = (2 + 2√

3
, (
√

2
2 ,

√
2

2 )).

λ1 = 11
2
√

3
with Z-eigenvectors: x1 = (

√
3

2 ,
1
2 ), and x2 = ( 1

2 ,
√

3
2 ).

◦ the eigenvalue λ1 is not positively simple!
Similar to H-eigenvalues, we may define the Z-spectrum of A as
follows.

Definition

Let A ∈ R[m,n]. We define the Z-spectrum of A,

Z(A) = {λ |Z − eigenvalues ofA}.

Assume Z(A) , ∅, define the Z-spectral radius of A,

%(A) := max
{
|λ| | λ ∈ Z(A)

}
.
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No Largest MODULUS!
In contrast to the H-spectral radius ρ(A), the Z-spectral radius %(A)
of A may not be itself a positive Z-eigenvalue of A .

Example

a1112 = 30, a1212 = 1, a1222 = 1, a2111 = 6,

a2112 = 13, a2122 = 37, and aijkl = 0 elsewhere.

We solve: 
30x2

1x2 + x1x2
2 + x3

2 = λx1,

6x3
1 + 13x2

1x2 + 37x1x2
2 = λx2,

x2
1 + x2

2 = 1.

K. C. Chang A Survey on Eigenvalues for Nonnegative Tensors



It is easy to check: A is irreducible and there are three Z-eigenpairs:

λ1 = 63
5 , x1 = (±

√
10

10 ,
3
√

10
10 ));

λ2 = −64
5 , x2(±

√
5

5 ,∓
2
√

5
5 ));

λ3 = −15, x3 = (±
√

2
2 ,∓

√
2

2 )).

%(A) = |λ3| = 15, but 15 is not a Z-eigenvalue of A!
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Let A ∈ R[m,n]
+ ,

Λ(A) = {λ ≥ 0 | λ ∈ Z(A)}

is called the nonnegative spectrum .
◦ Λ(A) , ∅ is compact, but not necessarily a finite set.

Example

a1112 = a2122 = 2 and aijkl = 0 elsewhere.

The Z-eigenvalue problem is to solve:
2x2

1x2 = λx1,

2x1x2
2 = λx2,

x2
1 + x2

2 = 1.

(x1, x2) ∈ P ∩ S1
{

x1x2 = 0⇒ λ = 0,
0 < 2x1x2 ≤ 1⇒ λ = 2x1x2.

Λ(A) = [0, 1].
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Special classes of nonnegative tensors
1. Weakly symmetric tensors
A ∈ R[m,n] is called weakly symmetric [CPZ] if the associated
homogeneous polynomial

Axm = fA(x) :=
n∑

i1,i2,...,im=1

ai1i2···imxi1xi2 · · · xim

satisfies ∇fA(x) = mAxm−1.
◦ Symmetric tensor ⇒ weakly symmetric, but the converse is not
true.
◦ Eigenvalue /eigenvector of a weakly symmetric tensor A,⇔
critical value/ point of the function fA.
◦ If A is weakly symmetric, then

fA(x) =
1
m
〈∇fA(x), x〉 = 〈Axm−1, x〉,

where 〈·, ·〉 denotes the standard inner product on Rn.
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Let
λ∗ = max{λ ∈ Λ(A)}.

λ̄ := max
x∈Sn−1

fA(x) = max
x∈Sn−1

Axm.

Definition

([CPZZ]) Let A ∈ R[m,n]
+ be irreducible. We define the following two

functions for all x ∈ Pn \ {0}:

ν∗(x) := min
1≤i≤n

(Axm−1)i

xi
and ν∗(x) := max

1≤i≤n

(Axm−1)i

xi
.

and
%∗ := sup

x∈(Pn)◦∩Sn−1
ν∗(x) and %∗ := inf

x∈(Pn)◦∩Sn−1
ν∗(x).
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Theorem

[CPZZ] Assume A ∈ R[m,n]
+ is weakly symmetric and irreducible. Then

1 Λ(A) ⊆ [%∗, %∗].
2 %(A) = λ̄ = λ∗ = %∗.
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2. Transition probability tensors
A tensor P = (pi1i2...im) ∈ R[m,n]

+ satisfying

n∑
i1=1

pi1,i2,··· ,im = 1, 1 ≤ i2, ..., im ≤ n,

is called a transition probability tensor. One studies the Z1
eigenvalue problem for P.

Pxm−1 = λx, x ∈ ∆n = {x ∈ Pn |Σn
i=1xi = 1}.

◦ ⇒ λ = 1.
◦ Z1 eigenvectors of P ⇔ fixed points of T : x 7→ Pxm−1 on ∆n.

Theorem

(x0, λ0) is a Z1-eigenpair ⇔ ( x0
‖x0‖2

, λ0
‖x0‖

m−2
2

) is a Z-eigenpair.
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We focus on studying the classes of transition probability tensors,
whose positive Z-eigenvector is unique. Let

δm = min
V⊂{1,2,···n}

[ min
i2,···im

Σi∈Vpii2···im + min
i2,···im

Σi∈V′pii2···im].

Theorem
(Contraction)(W. Li and M. Ng [LM]) Let P be a transition
probability tensor. If

δm >
m − 2
m − 1

, (∗)

then the mapping T : x→ Pxm−1 on the simplex ∆n is a contraction.

Corollary

(Uniqueness and Convergence)[LN] The map T : x 7→ Pxm−1 on ∆n

possesses one and only one fixed point.
∀ x0 ∈ ∆n, Tk(x0) tends to the fixed point of T as k → ∞. Moreover,
the iteration linearly converges.
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An easy verification: Let ([LN]).

Osc(P) = max
i,i2,··· ,im,j2,··· ,jm∈{1,2,··· ,n}

|pii2··· ,im − pij2,··· ,jm |

be the oscillation of P:

Osc(P) <
2

n(m − 1)
⇒ (∗).

Denote the n − 1 dimensional simplex.

∆′n = {x′ = (x1, · · · , xn−1) ∈ Pn−1 | 0 ≤ Σn−1
k=1xk ≤ 1},

Rewrite the mapping T on ∆n by a mapping R = Rn : ∆′n → ∆′n as
follow:

R(x′) = (Pxm−1|xn=1−Σn−1
j=1 xj

)n−1
1 .

Let S = (sij) be a symmetric matrix: sij = 1
2 (rij + rji), where

rij(x′) =
∂R(x′)i

∂xj
.
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Theorem
(monotone [CZ]) If maxx′∈∆′ γ(S(x′)) < 1, where γ(S) denote the
largest eigenvalue of S, then the nonnegative Z1-eigenvector of P is
unique.

Theorem

[CZ] If P ∈ R[m,n] is a transition probability tensor and ∃ k such that

dk := |pi1i2···im−pk,i2···im | <
1

(n − 1)(m − 1)
, ∀ i1, i2, · · · , im ∈ {1, 2, · · · n},

then P has unique fixed point in ∆n.
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It is worth comparing Theorem (Contraction) and Theorem
(monotone):

min
k

max
i1i2···im

|pi1i2···im − pki2···im | <
1

(n − 1)(m − 1)
,

which bounds the oscillations between all elements with the same
last m − 1 modes: i2, · · · , im. and

Osc(P) = max
i,i2···im,j2··· ,jm

|pii2···im − pij2···jm | <
2

n(m − 1)
,

which bounds the oscillation with the same first mode: i .

Theorem
(Jacobian [CZ]) If P is an irreducible transition probability tensor,
and T is the mapping defined above. Assume det(Id − J(x)) , 0 does
not change sign on Fix(T) . Then T has a unique fixed point.

where

J(x) = (
∂(Pxm−1)i

∂xj
).
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Questions
1 Find classes of nonnegative tensors, in which every tensor

possesses unique positive Z eigenvalue with positive eigenvector.
2 Find classes of nonnegative tensors, in which the Z spectral

radius is positively simple.
3 Find classes of nonnegative tensors, in which, the Z spectral

radius is of largest modulus.
4 Find rapid algorithm for computing %(A).
5 If there are multiple positive Z−eigenvalues, how to compute all

of them ?
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